Persistent androgen receptor-mediated transcription in castration-resistant prostate cancer under androgen-deprived conditions
نویسندگان
چکیده
The androgen receptor (AR) is a ligand-inducible transcription factor that mediates androgen action in target tissues. Upon ligand binding, the AR binds to thousands of genomic loci and activates a cell-type specific gene program. Prostate cancer growth and progression depend on androgen-induced AR signaling. Treatment of advanced prostate cancer through medical or surgical castration leads to initial response and durable remission, but resistance inevitably develops. In castration-resistant prostate cancer (CRPC), AR activity remains critical for tumor growth despite androgen deprivation. Although previous studies have focused on ligand-dependent AR signaling, in this study we explore AR function under the androgen-deprived conditions characteristic of CRPC. Our data demonstrate that AR persistently occupies a distinct set of genomic loci after androgen deprivation in CRPC. These androgen-independent AR occupied regions have constitutively open chromatin structures that lack the canonical androgen response element and are independent of FoxA1, a transcription factor involved in ligand-dependent AR targeting. Many AR binding events occur at proximal promoters, which can act as enhancers to augment transcriptional activities of other promoters through DNA looping. We further show that androgen-independent AR binding directs a gene expression program in CRPC, which is necessary for the growth of CRPC after androgen withdrawal.
منابع مشابه
The Mechanism of Androgen Deprivation and the Androgen Receptor
Prostate cancer is a major cause of cancer-related deaths in American men. The development and growth of prostate cancer depends on the androgen receptor (AR) and its high-affinity binding of dehydrotestosterone (DHT), which derives from testosterone (T). Most prostate tumors regress after therapy to prevent testosterone production by the testes, but the tumors eventually recur and cause death....
متن کاملFoxA1 specifies unique androgen and glucocorticoid receptor binding events in prostate cancer cells.
The forkhead protein FoxA1 has functions other than a pioneer factor, in that its depletion brings about a significant redistribution in the androgen receptor (AR) and glucocorticoid receptor (GR) cistromes. In this study, we found a novel function for FoxA1 in defining the cell-type specificity of AR- and GR-binding events in a distinct fashion, namely, for AR in LNCaP-1F5 cells and for GR in ...
متن کاملInhibitor of p52 NF-κB subunit and androgen receptor (AR) interaction reduces growth of human prostate cancer cells by abrogating nuclear translocation of p52 and phosphorylated ARser81
Accumulating evidence shows that androgen receptor (AR) activation and signaling plays a key role in growth and progression in all stages of prostate cancer, even under low androgen levels or in the absence of androgen in the castration-resistant prostate cancer. Sustained activation of AR under androgen-deprived conditions may be due to its interaction with co-activators, such as p52 NF-κB sub...
متن کاملCrosstalk between RON and androgen receptor signaling in the development of castration resistant prostate cancer
Castrate-resistant prostate cancer (CRPC) is the fatal form of prostate cancer. Although reactivation of androgen receptor (AR) occurs following androgen deprivation, the precise mechanism involved is unclear. Here we show that the receptor tyrosine kinase, RON alters mechanical properties of cells to influence epithelial to mesenchymal transition and functions as a transcription factor to diff...
متن کاملChromatin, Gene, and RNA Regulation Role of WNT7B-induced Noncanonical Pathway in Advanced Prostate Cancer
Advanced prostate cancer is characterized by incurable castration-resistant progression and osteoblastic bone metastasis. While androgen deprivation therapy remains the primary treatment for advanced prostate cancer, resistance inevitably develops. Importantly, mounting evidence indicates that androgen receptor (AR) signaling continues to play a critical role in the growth of advanced prostate ...
متن کامل